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SUMMARY

Visual object recognition develops during the first
years of life [1]. But what if one is deprived of vision
during early post-natal development? Shape infor-
mation is extracted using both low-level cues
(e.g., intensity- or color-based contours) and more
complex algorithms that are largely based on infer-
ence assumptions (e.g., illumination is from above,
objects are often partially occluded) [2]. Previous
studies, testing visual acuity using a 2D shape-iden-
tification task (Lea symbols), indicate that contour-
based shape recognition can improve with visual
experience, even after years of visual deprivation
from birth [3]. We hypothesized that this may gener-
alize to other low-level cues (shape, size, and color),
but not to mid-level functions (e.g., 3D shape from
shading) that might require prior visual knowledge.
To that end, we studied a unique group of subjects
in Ethiopia that suffered from an early manifestation
of dense bilateral cataracts and were surgically
treated only years later. Our results suggest that
the newly sighted rapidly acquire the ability to recog-
nize an odd element within an array, on the basis of
color, size, or shape differences. However, they are
generally unable to find the odd shape on the basis
of illusory contours, shading, or occlusion relation-
ships. Little recovery of these mid-level functions is
seen within 1 year post-operation. We find that visual
performance using low-level cues is relatively robust
to prolonged deprivation from birth. However, the
use of pictorial depth cues to infer 3D structure
from the 2D retinal image is highly susceptible to
early and prolonged visual deprivation.

RESULTS

We studied shape discrimination in Ethiopian children suffering

from early-onset complete bilateral cataracts (most likely within

months of birth). All subjects were operated only years after birth.

Shape recognition was assessed using a visual search proce-

dure, requiring the participants (‘‘cataracts,’’ 11 sight-retrieval
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patients tested days to years after operation [see Table S1],

and ‘‘controls,’’ 11 matched-control peers) to find an odd target

among an array of elements (Figure 1A). Testing consisted of

three low-level tasks (requiring discrimination based on color-,

size-, or contour-defined shape) and four mid-level tasks (based

on 3D pictorial cues: occlusion, shading, and box; or subjective

contours: Kanizsa [4]). For more details, see the Supplemental

Experimental Procedures.

One major concern is that in the cataracts group, failure in

shape recognition may result simply from blurred vision due to

uncorrected refraction or amblyopia after prolonged visual depri-

vation. To ensure that any difference in perceptual capabilities

between the two groups did not merely stem from the cataracts

group’s poor low-level vision, we measured the contrast sensi-

tivity function (CSF) of each of the cataract-treated subjects

in an auxiliary experiment. Each cataract-treated subject was

paired with a control subject who viewed blurred stimuli of

reduced contrast, to best reproduce the specific loss in contrast

sensitivity of that cataract-treated subject (see the ‘‘Control for

low-level deficits’’ section in the Supplemental Experimental

Procedures and Figure S1). The performance of the cataract-

treated subjects and their individually matched control subjects

is plotted in Figure 1C.

In the low-level tests, most patients identified the target, and

there was no significant difference between the groups. On the

other hand, cataract-treated subjects’ performance on three

of the mid-level tasks was significantly deficient compared to

the performance of their matched control subjects (one-tailed

Wilcoxon signed-rank test: Z = �2.67, �2.31, and �2.67;

p = 0.004, 0.010, and 0.004; effective sample size = 9, 9, and 9

for the occlusion, box, and Kanizsa conditions, respectively).

See Figure 1D.

The shading condition was the only test in which many cata-

ract-treated subjects were still able to perform the task above

chance. Indeed, the difference in performance level between

the two groups was only close to significance (Z = �1.63,

p = 0.051, effective sample size = 10). However, our on-line

impression was that unlike control subjects, who typically iden-

tify the odd element almost immediately, these cataract-treated

subjects seemed to carefully examine each item, looking for

local changes in a specific low-level feature to spot the odd

man out. If search was indeed conducted in such a manner, a

great cost in the reaction time (RT) should be apparent if more

elements are to be serially scanned. To test this, the search RT

for a target among small and large arrays is plotted in Figure 1E,
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Figure 1. Main Experiment Stimuli and Results

(A) Exemplars of the main experiment stimulus arrays in the various experimental conditions. Note the distinction between low-level andmid-level conditions and

the variation in array size in some cases.

(B) Schematic exemplars of themain experiment’s stimuli: Stimuli presented to control subjects were blurred at different levels to account for the low visual acuity

of the individual cataract-treated subjects (for more details, see Figure S1 and the ‘‘Control for low-level deficits’’ section in the Supplemental Experimental

Procedures).

(C) Performance of cataract-treated (red) and their individually matched control (blue) subjects in themain experimental conditions. Subject index is ordered from

the worst (1) to best (11) visual acuity according to the cataract-treated subjects’ CSF cutoff.

(D) The difference in performance level (D fraction correct) between each cataract-treated subject and his/her individually matched control. Positive values

correspond to better performance of the control (Cont > Cat). Note that the differences are much clearer and consistent in the mid-level tasks. Asterisks denote

significant differences between populations (Wilcoxon test, p < 0.05).

(E) Mean reaction time as a function of array size for the six cataract-treated subjects (red) who succeeded (beyond 50%) in the shading condition and their

individually matched control subjects (blue) in the color, size, and shading conditions. Error bars indicate the SEM.

See also Figure S1, Table S1, and Movie S1.
for the six cataract-treated subjects (in red) who succeeded

(above 50%) in the shading condition (the mid-level condition

with the best patient performance). The average RT of their indi-

vidually matched controls’ is plotted in blue. These six cataract-

treated subjects were slower in their search (per element) relative

to their matched control subjects. Although the results were not

quite statistically significant, probably due to lack of power (one-

tailed Wilcoxon signed-rank test: Z = �1.57, p = 0.058, effective

sample size = 6), our strong impression is that the cataract-
2374 Current Biology 25, 2373–2378, September 21, 2015 ª2015 Els
treated subjects shifted to a different (serial) search strategy in

this task: each item was carefully examined (e.g., for a decrease

in the luminance level along the vertical axis) to spot the odd

man out, rather than experiencing a ‘‘pop-out’’ as controls do

due to their immediate recognition of 3D shape. To summarize,

together, the above results suggest that the use of pictorial depth

cues to recover 3D and illusory contour perception are severely

impaired following an extended period of early-onset visual

deprivation.
evier Ltd All rights reserved
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Figure 2. Factors Affecting Hue-Discrimi-

nation Threshold and Mid-Level Perfor-

mance after Surgery

Late-treated subjects are plotted in red sym-

bols, early-treated subjects in green. In all

cases, the performance of each subject (cata-

ract treated and control alike) was first age

normalized by computation of the residual from

that expected from normal child development

(see Figures S2C and S2D). Then, the differ-

ence between performance of each cataract-

treated subject and his/her matched peer was

computed.

(A) Hue-discrimination differential thresholds as a

function of the time past since surgery. The inset

depicts for illustrative purposes the threshold of

one cataract-treated subject (Cat), the matched

control (Cont), and the difference value (D). The

results of individuals which performed the exper-

iment multiple times are connected by a line. The

ordinate is in degrees of hue according to the

computer’s HSL (hue, saturation, and lightness)

values.

(B) The same individual results as in (A) after

averaging across repeated sessions are re-plotted

as a function of the subjects’ age at surgery.

(C) Mid-level differential performance as a func-

tion of the time past since surgery. Performance

is measured as the fraction of correct responses

(averaged across all four mid-level tasks) in

comparison with the level achieved by the individually matched control subjects. Positive values indicate that performance is worse than that of controls.

(D) The same results as in (C) after averaging across repeated sessions as a function of the cataract subjects’ age at surgery.

See also Figure S2 and Tables S1 and S2.
It may be argued that cataract-treated subjects were as good

as controls in the low-level tasks (e.g., the color condition) due to

the relative easiness of the task (i.e., a ceiling effect). In an auxil-

iary experiment, we assessed the cataract-treated subjects’

hue-discrimination threshold. The same odd-man-out task with

six elements of colored circles was used, but the difference in

hue between the target and the distractors was varied across

blocks of trials, allowing assessment of the threshold hue differ-

ence per individual (see Figures S2A and S2B). Luminance level

was randomized across elements (range, 30–49 cd/m2) such that

the odd target could only be found on the basis of hue differ-

ences. Since hue-discrimination threshold improves during

normal child development (see the left panel in Figure S2C),

each subject’s performance level was normalized by comparing

it to the age-matched standard performance (see the legend for

Figures S2C and S2D).

Figure 2 depicts each cataract-treated individual’s hue-

discrimination threshold and mid-level performance (across all

mid-level tasks) relative to their CSF-matched control after tak-

ing into account the expected performance given the subject’s

age (for full details, see the Supplemental Experimental Proce-

dures and Figure S2). This differential performance is plotted

as a function of the time passed since surgery (Figures 2A and

2C) and the child’s age at surgery (Figures 2B and 2D). Generally,

late-cataract-treated subjects perform worse than their individu-

ally matched control subjects in both tasks (Wilcoxon signed-

rank test: hue discrimination, Z = �2.22, p = 0.03; mid-level,

Z = �2.93, p < 0.005). In the hue-discrimination experiment,

the performance of the late-cataract-treated subjects steadily
Current Biology 25, 2373–237
improves as a function of the time since surgery (Figure 2A), clos-

ing the gap with the sighted peers after less than 1 year. The data

are less clear regarding the dependence on the age at surgery

(Figure 2B). Indeed, a multiple regression model of the cata-

ract-treated group’s hue-discrimination thresholds (F(2,8) =

6.71, p = 0.019, R2 = 0.627) shows that the time since surgery

(in logarithmic scale) can account for a significant proportion of

the variance (p = 0.017), but the age at surgery does not (p =

0.485). Similar improvement in another low-level task during

the months following surgery has recently been shown for the

identification of simple 2D objects (Lea symbols) based on lumi-

nance-defined contours [3], in which both threshold contrast and

spatial resolution improve with time.

As for the mid-level vision functions tested here, we found

no dependence of performance on the time following surgery

(Figure 2C), nor was there any clear dependence on the age in

which the cataract-treated subjects were operated (F(2,8) =

1.01, p = 0.40, R2 = 0.202; time since surgery, p = 0.52; age at

surgery, p = 0.39).

We also tested a group of Israeli subjects (mid-level ex-

periment, n = 7; hue experiment, n = 8) who had congenital

bilateral cataract and were operated within months after

birth (Figure 2, green symbols). These children had a long

period of visual experience (many years). This early-cataract-

treated group did well in both tasks (though we may have

missed subtle deficits since most reached a ceiling effect).

Since both factors (age at surgery and time since surgery)

covary and performance shows little variation across these

early-cataract-treated subjects, this group does not shed
8, September 21, 2015 ª2015 Elsevier Ltd All rights reserved 2375



much light on the relative importance of each factor in deter-

mining visual function.

DISCUSSION

We studied a unique group of patients that suffered from an

early-onset manifestation of bilateral cataracts and were treated

only years after birth. These newly sighted children were able to

recognize an odd object within an array based on simple 2D

cues. Similar to their normally sighted peers, when the target

was defined by a unique low-level visual cue (e.g., color-, size-,

or luminance-defined shape), their RT hardly increased with the

array size. However, they were clearly deficient, in comparison to

their sighted peers, when static mid-level visual routines (e.g.,

extracting shape from pictorial depth cues and illusory contours)

were required to identify the target element. Generally, this defi-

ciency did not improve within the first 2 years after surgery. The

elapsed time since surgery was not a factor in determining

mid-level vision capabilities. Still, most of our data were

collected during the first 2 years post-operation, and we tested

only a few mid-level routines (mainly using pictorial depth

cues). Thus, we cannot rule out the possibility of recovery of

some mid-level visual functions after many years of visual

experience.

Maybe it is not too surprising that the newly sighted can distin-

guish between colors or size/shape differences based on lumi-

nance contours soon after surgery. It is commonly held that we

are born with the rudimentary structural formation allowing for

low-level vision [5]. Here we show that this neural structure re-

tains its functionality even in individuals in which only scattered

light reached their retinas during early childhood. On the other

hand, extracting shape from mid-level cues is a totally different

task. Surfaces can produce very different retinal images, de-

pending on the illumination angle, being shaded by themselves

or by other surfaces. Mid-level vision deals primarily with the re-

covery of surfaces despite such dramatic changes in their phys-

ical appearance. Behavioral studies in infants show that most

stationary mid-level cues are understood only at about 6 months

of age [6, 7]. Infants that had suffered from visual deprivation

during these critical months are somewhat impaired in tasks

requiring completion of Kanizsa shapes [8]. Here we show that

years of visual deprivation can hamper this capacity, as well as

perception based on other static pictorial depth cues that are

likely to tap the ventral stream.

Until now, only a few case studies explored object perception

capabilities in the newly sighted. These included subject MM,

who was blinded at the age of three, regained vision only at

the age of 46, and was tested months later [9]. Other patients

were surgically treated and tested through the pioneering initia-

tive of Pawan Sinha (Project Prakash): SRD was presumably

blind from birth, regained vision at the age of 12, and was tested

20 years after surgery [10], and subjects SK, JA, and PB re-

gained sight at the ages of 29, 13, and 7 years, respectively

and were tested months later [11]. All of these patients had no

problem matching or identifying simple 2D shapes. Similar to

our results, all those tested with the Necker cube (four out of

five) could not identify it as a 3D object. MM, who was the

only patient that was tested on Kanizsa shapes, could not fill

in the illusory contours and failed to see the resulting square.
2376 Current Biology 25, 2373–2378, September 21, 2015 ª2015 Els
The results regarding shape from shading and occlusion were

somewhat more complicated to generalize. All patients were

shown 2D shapes in which one object occluded the other.

MM was asked which object was in front of the other, whereas

SRD was asked to count the objects. Both succeeded in their

task. The rest (three out of five) failed to answer both questions.

Understanding occlusion relationships might therefore require

either functional vision in the first few years of life (MM) or

decades of visual experience (SRD; although counting of ob-

jects does not necessarily require the realization that some ob-

jects occlude each other). Finally, MM spotted the odd object

based on shape from shading and, similar to our patients, MM

failed to show automatic pop-out. To summarize, our current

findings are generally in line with earlier case studies that hinted

that mid-level visual functions might be affected by long-term

visual deprivation.

Our current work may also explain why earlier case reports

clearly showed that individuals who acquire sight late in life

show a profound deficit in integrating the myriad visual features

in the scene into a coherent visual scene [9, 12–16]. For example,

patient MM reported that scene interpretation was extremely

difficult, and if it is achieved, it is done by use of explicit cognitive

strategies (e.g., what is themost likely interpretation for this blob,

given the circumstances). It is commonly held that object con-

stancy (e.g., recognition of an object as the same as previously

seen, despite changes in the illumination angle, shading, occlu-

sion, rotation, etc.), a key characteristic of our vision that is so

clearly lacking in MM, probably cannot be established without

mid-level vision [17]. Similarly, SK, JA, and PB, who regained

sight late, were all unable to utilize cues such as contour contin-

uation, junction structure, and figural symmetry to recognize

shapes [12]. They also were poor at naming images of common

objects. When asked to point to potential objects, they tended

to over-segment objects into meaningless regions which had

similar hues or luminance levels. Obviously, since these regions

vary according to the direction of illumination and viewing angle,

one fails to generate an invariant object representation on the

basis of such fragments.

We find a great degree of variation in the treated children’s vi-

sual capabilities. Some walk into a room without any help and

can bypass obstacles such as chairs or tables, but others use

their hands to guide them. Almost all of the children can make

a visually guided graspingmovement in an effort to catch a color-

ful balloon and throw it around. None of them, however, perform

these tasks as gracefully as a normal child. Currently, we are

unable to provide a good explanation for the source of the large

differences in performance among our patient population. How-

ever, we can suggest some ideas, pointing to some likely direc-

tions based on our subjective observations. First, some of the

children may have had residual vision in the months following

birth, such that full blindness developed only later in time. Sec-

ond, some residual vision may have been possible even prior

to the surgery. Typically, the children’s vision, prior to surgery

was only crudely assessed. Clinically, vision was categorized

by the treating ophthalmologist in ascending order from having

mere light perception, seeing hand motion, and finger counting

from X meters. The patients’ pre-surgery vision, even if defined

merely as light perception, could still vary considerably between

subjects (e.g., different thresholds for light perception, residual
evier Ltd All rights reserved



vision in the periphery, etc.). Third, clinically, some surgeries are

probably more successful than others. Fourth, unfortunately, in

most cases, we do not even know for certain the age of the chil-

dren as it is not in any formal record. Better tools for assessment

of all these potential factors for variability are obviously in need.

To summarize, Sinha and colleagues have studied a number of

late sight-retrieval patients, focusing on the patients’ ability to

perform perceptual tasks under naturalistic conditions [10, 11].

Thus, many of their tasks could be solved using low-level cues

(even if that isn’t how people normally solve the task). Fine

et al. used carefully controlled stimuli, but this was a single

case study with a subject that had vision almost until age four

[9]. This work bridges across those two studies, showing that

pictorial depth cue perception and illusory contour completion,

which are typically based on learned inference assumptions

(e.g., illumination is from above, contours are often partially

occluded, etc.), are not spontaneously acquired post-operation.

If further natural experience or a targeted learning effort cannot

change this condition, (as suggested from the case of MM,

tested 10 years later [18]), it may indicate that at least some

mid-level vision functions can only be acquired within a critical

period of development. We acknowledge, however, that this

can only be proven by further showing that a prolonged period

of visual deprivation late in life does not cause the same deficits

(as suggested by one previous case study [19]).

Finally, late-sight-retrieval patients might be impaired in

the mid-level tasks since these stimuli are more amenable to vi-

sual crowding than low-level, simple stimuli [20, 21]. Crowding,

generally defined as the deleterious influence of nearby contours

on visual discrimination, is a major bottleneck for object percep-

tion and is more potent in people with amblyopic vision. Crowd-

ing can be seen at the level of simple features (e.g., low-level

vision) and also at the level of integration or interpretation of

the features (e.g., face recognition, showing holistic crowding).

It dramatically reduces the ability to identify a target, especially

when it is identified on the basis of complex rather than simple

features. Children are much more impaired by crowding than

adults, even when their acuity is fully developed. Learning is

known to lead to shrinking of the spatial extent of crowding. It

therefore seems reasonable that the newly sighted might show

greater crowding effects than their peers. However, crowding

is relatively weak when the flanking elements all share a common

feature, such that they can be grouped together and apart from

the target object. Also, crowding is much more pronounced

when the stimuli are presented in the visual periphery. In our

study, the stimuli were shown until the participants responded,

leaving them ample time to make multiple fixations on the visual

elements on the screen, thereby allowing their analysis with

foveal vision that is relatively crowding free. We therefore sug-

gest that crowding may have amplified the late-treated subjects’

difficulty utilizing mid-level visual routines, but it is probably not

the core problem. Further experiments are required to clarify

this issue.
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